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Determinate and stochastic orientation dynamics of nematic liquid
crystals in the cross electric fields with frequencies up to the

megahertz range

S.I. TRASHKEEV*, V.M. KLEMENTEV and P.A. STATSENKO

Institute of Laser Physics, Russian Academy of Sciences, Siberian Division, Novosibirsk 630090, Russia

(Received 22 April 2005; in final form 1 December 2005; accepted 1 December 2005 )

A theoretical and experimental description is given of the director orientation dynamics in
nematic liquid crystals placed in variable electric fields comprising several components and
having different directions (crossed fields) and frequencies up to 5 MHz. The calculations
show that the system of interest is a physical object governed by non-linear dynamics.
Depending on numerical values of governing parameters, the following director state regimes
are obtained: stationary, periodic, quasi-periodic (multi-modal), and stochastic strange-
attractor-type. In the calculations, all the states are obtained by solving a determinate system
of two time-dependent first order non-linear equations, ignoring the electrohydrodynamic
effect. Preliminary verification is performed, and qualitative agreement with the mathematical
model under consideration is obtained in the range of frequencies (approximately 100 Hz and
higher) that allows electrical conductivity to be ignored. The influence of 2D and 3D rotating
electric fields with one frequency, and two- or three-component fields with different
frequencies, in the interval from 10 Hz to 5 MHz on the orientation of a nematic liquid crystal
is considered.

1. Introduction

Electro-optical properties of liquid crystals (LCs) are at

present well understood and have been studied in detail

in numerous publications and monographs, [1–4]. From

the practical point of view, LCs have found wide

application in data display [2], which is based on the

reorientation of the LC director and optical axis of the

medium, under the action of electric fields of low

strength—the Fréedericksz effect [1]. As a rule, the time

characteristics of Fréedericksz reorientations are long,

amounting to ,10–100 ms for a nematic LC (NLC) [3].

This response speed of the electro-optical changes in a

NLC results from the high rotational viscosity (0.1–1 P)

[3], which is inherent in almost any liquid crystal. That

is why it is supposed that at frequencies of >100 Hz, the

director re-orientation depends mainly on the viscosity

and root-mean-square value of the variable electric

field, and only weakly on its frequency. Hence it is

concluded that high-frequency reorientation in a LC is

impossible [5].

The purpose of the present study was to examine

qualitatively the orientational behaviour of a NLC in

electric fields comprising several components with

different directions (crossed field) and frequencies. In

such fields the director motion depends on the

amplitudes, frequencies and phases of the imposed

voltages, presenting continuous multi-frequency (quasi-

periodical) oscillating or rotating changes of orienta-
tion, up to those close to the stochastic regimes of the

strange attractor type. By its nature, the dynamics of the

processes under study does not result from mere

electrohydrodynamic (EHD) instability [4], since we

have considered frequencies up to 5 MHz. Typical

macroscopic flows of the liquid were observed at

frequencies of about 10 Hz, or at the instant of external

voltage cut-in and cut-off. Theoretical conclusions have
been proven qualitatively by previous experimental

data.

The first mention of the possible stochastization of

the NLC orientation state with no EHD-effect is found

in [6], where the authors studied experimentally the

interaction between the NLC and ordinary type light

waves of oblique incidence. Later, they studied the

determination of equations for the basic numerical
calculations [7] and revealed the possibility of quasi-

periodical and multi-mode regimes in the models,

describing the experiment in [6]. The study of this

phenomenon was continued in [8].

The early studies with the NLC in rotating magnetic

and electric fields were carried out by Tzvetkov and co-

workers [9]; the purpose was to define viscous constants.

The papers of B. Meyer et al. [10, 11] are very close to

the topic. They are devoted to the behaviour of NLC*Corresponding author. Email: sitrskv@mail.ru
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orientation in 2D rotating magnetic fields with low

frequencies, under or about several dozens hertz. In that

work the authors point out that it is necessary to

observe the hydrodynamic streams, which appear at the

low frequency reorientation from the homeotropic

initial state of the NLC. Among recent papers, we

should mention [12], which considers the similar
mechanism of the high speed director reorientation

(frequency of about 10 kHz, peak voltage about 200 V)

in 2D rotating electric fields. Some issues of rotating

and stochastic NLC orientation in multi-component

high frequency electric fields (including 3D rotating

fields), are described in [13], where questions of

pumping laser systems in the tera-Hertz range with a

liquid crystal active medium, in the dielectric regime,
were studied.

The early experiments of the present paper do not

aim to describe fully the whole body of possible

orientation phenomena that appear in a NLC interact-

ing with variable electric fields of complex configura-

tion. The purpose is to prove qualitatively conclusions

derived from the approximate mathematical model.

This is the problems statement, and investigations will
be continued in the future.

2. Equations of motion

To derive dynamic equations, we consider the interac-

tion geometry presented in figure 1; in the Cartesian

coordinate system r5(x, y, z). The designations are:

E5E(t, r) is the real-valued electric field vector in the

crystal, n5n(t, r) is the unit vector (director), and h and

Q are, respectively, the polar and azimuth angles, related

to n by the formula:

n~ nx, ny, nz

� �
~ sin h cos Q, sin h sin Q, cos hð Þ: ð1Þ

Next, we conveniently introduce the following unit

vectors orthogonal to n:

m~ mx, my, mz

� �
~

qn

qh
~ cos h cos Q, cos h sin Q, {sin hð Þ

p~ px, py, pz

� �
~

1

sin h

qn

qQ
~ {sin Q, cos Q, 0ð Þ

nmð Þ~0, npð Þ~0, mpð Þ~0:

ð2Þ

The volumetric part of the free energy density F for the

NLC is written as in [1]:

F~
1

2
K1 div nð Þ2zK2 n rot nð Þ2zK3 n|rot nð Þ2
h i

{
ea

8p
nEð Þ2:

Here, K1, K2, K3 are the Frank elastic constants; and

ea5eI2e), and eI, e) are the parameters of the

dielectric transmissivity tensor, which can be expressed

in terms of the Cartesian components ni of the director

as follows:

eij~e\dijzeaninj, i, j~x, y, z, ð4Þ

where dij is the Kronecker delta. The surface terms of

the free energy dictate the type of boundary interaction,

and their contribution is limited by the boundary

conditions.

Figure 1. Geometry of the NLC director interaction with an arbitrarily directed electric field.

(3)
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In the following we will consider the frequencies of

the electric fields, which influence the NLC and do not

differ very much from each other. We ignore the

frequency dependence of the material parameters Ki, e||,

e). For MBBA, except for the region of anisotropy sign

inversion (about 15 MHz), a frequency deviating by

10% causes a change in dielectric constants of less than

0.1–1% [4]. For 5CB in the frequency range under

consideration, the deviation is even less. There are no

data for the dispersion of the elastic and viscous

parameters.

In the 1D case, when all sought values depend only

on the coordinate z, expression (3) is written as follows:

F~
1

2
f

qh

qz

� �2

zg
qQ

qz

� �2

{
ea

4p
nEð Þ2

" #

ð5Þ

where

f ~f hð Þ~K1 sin2 hzK3 cos2 h,

g~g hð Þ~sin2 h K2 sin2 hzK3 cos2 h
� �

:

Variation in equation (5), taking into account the

relaxation terms, which dictate the time dependence t,

yields the following system of two nonlinear equations

for h and Q [4]:

c
qh

qt
~f

q2h

qz2
z

1

2
fh

qh

qz

� �2

zg
h

qQ

qz

� �2
" #

z
ea

4p
nEð Þ mEð Þ

c sin2 h
qQ

qt
~

q
qz

g
qQ

qz

� �
z

ea

4p
sin h nEð Þ pEð Þ:

ð6Þ

Here, fh5qf/qh, g
h
5qg/qh, and c is the viscosity

parameter of the NLC. The special case resulting from

the system of equations (6) is considered in [10], when

the electric fields are changed to magnetic fields.

Equations (6) are written in the approximation, that

does not take account of the flexoelectric additives or

the EHD-transfer of the liquid, which can be ignored

when a quite pure NLC is influenced by high frequency

electric fields. Conductivity in liquids is caused by the

fluidity of the ionic impurities and as a rule decreases

rapidly as the electric field frequency rises. The counter-

flows, especially during reorientation from the initial

homeotropic state [1, 4], will significantly affect the

director state at high frequency only at the start and

stop moments of the electric field, or for some other

reasons (as indicated below), which promote the low

frequencies in the dynamics of NLC orientation. In the

context of the accepted approximations, the equa-

tions (6) are correct at frequencies above 100 Hz [3, 4].

We have also considered experimentally the lower

frequencies of some dozens Hertz. In this region the

EHD application is incorrect. The flexoelectricity and

hydrodynamics, with more accurate definition of the

applicability boundaries, calls for individual study.

To the material equations (6) are to be added the

appropriate boundary conditions at z50, L, where L is

the crystal thickness. We adopt the following conditions

[4]:

K
qh

qz
+a

h
h

� �

z~0, L

~bh, K
qQ

qz
+aQQ

� �

z~0, L

~bQ ð7Þ

where the signs ¡, respectively, refer to the planes z50

and z5L; K is the mean Frank constant, and the

parameters ah, aQ, bh, bQ generally depend on the surface

energy density of the director with the bounding planes,

the flexo-electric coefficients and the electric-field

intensity.

To obtain a closed system, Maxwell equations

establishing the relationship between the electric fields

and the orientation of n should be added to (6). In the

context of the accepted approximations in the sample,

the necessary relationship is written in the dielectric

mode:

div
^
eE

� �
~0, rot E~0: ð8Þ

Here ê is the transmissivity tensor defined by (4). In the

one-dimensional case, with (4), equations (8) acquire the

form

q
qz

e\Ezzeanz nEð Þ½ �~0,
qEx

qz
~

qEy

qz
~0: ð9Þ

Equations (9) are easily integrated and the electric fields

inside the crystal can be uniquely determined from

specified field values. With appropriate initial condi-

tions for orientation angles,

h 0, zð Þ~h0 zð Þ, Q 0, zð Þ~Q
0

zð Þ ð10Þ

we obtain the closed system (6) with boundary

conditions (7) and the solution may be obtained with

allowance for (9); this system can be used to predict the

NLC interaction with the variable electric field in a one-

dimensional case.

Considering sufficiently intense electric fields, which

do not depend on the spatial coordinates and excess

threshold values for the Fréedericksz reorientation [1],

we have

Ej j2>> E2
th~

4p3K3

L2ea
: ð11Þ

Then the coordinate dependences can be ignored inside

the region, except for the thin near-surface layers, and

the boundary conditions effect is neglected [1, 9, 10].
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The simplified equations (6) and (9) yield a system of

ordinary differential equations depending on time only:

c
dh

dt
~

ea

4p
nEð Þ mEð Þ, c sin h

dQ

dt
~

ea

4p
nEð Þ pEð Þ,

Ez~
eEEex

z {ea cos h sin h Ex cos QzEy sin Q
� �

e\zea cos2 h
,

Ex~Eex
x , Ey~Eex

y ,

h 0ð Þ~h0, Q 0ð Þ~Q
0

ð12Þ

where h5h(t), Q5Q(t) are the angle functions in the

central part of the sample (z>L/2), h0, Q0 are their

primary values, Eex(t) are the external electric fields in

the absence of a medium. The assumption of coordinate

independence of the external electric fields with chan-

ging spatial direction is incorrect in the general case. It

is valid if we consider the sample region, whose typical

size is much smaller than the size of the fields’ non-

uniformity.

3. 2D Electric field: analytical solution

The system of equations (6) and simplified system (12)

in some cases allowing to carry out analytical research,

but the general case demands numerical calculation.

First we consider the case with the analytical solution.

Let us consider the vector of the electric field E5E(t),

which lies in the plane (x, y). Here, at h;p/2, Q5Q(t),

E5[Ex(t), Ey(t), 0], instead of the system (12) equations

we have one equation for the horizontal angle Q of

(Ez;0) kind:

c
dQ

dt
~

ea

4p
Ex cos QzEy sin Q
� �

{Ex sin QzEy cos Q
� �

:ð13Þ

In the case of periodic time dependence

E(t)5A[sin (vt+yx), sin (vt+yy), 0], for the 2D rotating

(circular) field Ex5A cos vt, Ey5sin vt (yx5p/2, yy50)

we have [10]

dQ

dt
~{

eaA2

8pc
sin 2 Q{vtð Þ½ �: ð14Þ

If we consider the field E(t)5A[cos (vt), 0, sin (vt)],

which lies in the plane (x, z), then, from (12), at Q;0, for

the polar angle h5h(t), we obtain an equation similar to

(14).

Equation (14) is integrated analytically. Let us define

a52(Q2vt) and turn to the dimensionless time t5vt;

then (14) will be written as

da

dt
~{2 1zd sin að Þ: ð15Þ

Thus we obtain the solution

Q tð Þ~
t{arctg dzVtgV t{Cð Þ½ �, d2

v1, V2~1{d2,

t{arctg t{1{C
t{C

� �
, d2~1, V2~0,

t{arctg d{VthV t{Cð Þ½ �, d2
w1, V2~d2{1,

8
><

>:
ð16Þ

where d5eaA
2/(8pcv), and constant C is defined from

the initial conditions. The action of the time-linear term

in equations (16), which results in a continuous, on

average, rotation of the director, is cancelled.

For comparison, we present here the solution of

equation (13) for the case of a unidirectional electric

field E: Ex5A sin vt, Ey5A sin vt, Ez50 (yx5yy50). It

follows from equation (13) that

dQ

dt
~

eaA2

4pc
sin2 vt cos 2Q: ð17Þ

Equation (17) can also be easily integrated; the solution

is

Q~{
p

4
+arctg C exp d 2t{sin 2tð Þ½ �f g ð18Þ

where C is the integration constant, and the dimension-

less time t and the parameter d are defined as

previously. Relationship (18) describes non-threshold

Fréedericksz reorientation in a variable electric field.

Let us consider the behaviour of Q for both cases of

the field configuration in the onset mode (tR‘) and

under the condition d2%1 or v&eaA2/8pc. For the

rotating field, we have from equation (16)

Q1&C1z
eaA2

8pcv
sin 2vtz

1

v

eaA2

8pc

� �2

t ð19Þ

where, as can be seen, there are oscillating and time-

linear items. For the second case, it follows from (18)

that

Q2&C2z
eaA2

4pcv
exp {

eaA2

4pc
t

� �
sin2 vt: ð20Þ

As can be seen from equation (19) and (20), in the case

of a circular field the amplitude of director oscillations

in the solution of Q1 is finite in time; in a unidirectional

field, for Q2, this amplitude vanishes as tR‘. The

integration constants C1, C2 do not depend on time.

This undamped oscillatory behaviour of the director

orientation, and also the continuous rotation of the

director with a frequency proportional to the fourth

power of the supplied voltage amplitude A, is a

qualitative property of the case considered (19), which

distinguishes it from the non-threshold Fréedericksz

transition in variable fields with constant direction

equation (20).
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The possibility of continuous director rotation was

discovered and examined in [14]; these authors studied

the interaction of homeotropically oriented nematics

with circularly polarized light waves. Taking into

account the mentioned approximations, the case (19)

qualitatively approaches the results given in [14], in spite

of the fact that light-induced reorientation has its own

features.

Figure 2 presents the solutions Q(t) for different d,

which follow from equation (17): curve 1 involves

dependence (18) and equation (14); curves 2, 3 involve

dependence (16). For comparison, the rhombs (curve 4)

present the numerical solution in the sample centre

Q(t);Q(t, L/2), which follows from the equations in

partial derivatives (6) for the case of the electric field

rotating in the plane (x, y). The boundary conditions

were chosen for homeotropic orientation and are

written as

h 0, Lj ~0,
qQ

qz
0, L~0:j

Curve 3 is derived at d53, curve 4 is for the value of the

field amplitude, which is twice the threshold value,

|E|52Eth (such a field allows one to compare the

calculation variants). In the context of the accepted

approximations, both variants must give solutions close

to each other. As is seen in from curves 3 and 4, taking

account of the spatial dependences, which are dictated

by the elastic forces in the NLC, results in a slight

change of the inclination angle of the average values of

Q to axis t. Figure 3 demonstrates the calculated

function of transmission T(t) under crossed polarizers

for the solution shown by curve 3 in figure 2. The

smooth envelope T(t) is caused by the continuous

rotation of the director. It depends on the linear term in

the solution to equation (16). The high frequency

component depends on the oscillating additive to (16).

In the case when the field rotates in the plane (x, z),

solutions for the versions with and without NLC

elasticity start to differ more significantly than in the

previous example. Figure 4 shows the dependences of

the polar angle h(t) obtained from the integrated system

of ordinary differential equations (12), which trans form

to equation (14), Q changes to h (curve 1); and from the

solved system of equations in partial derivatives (6) in

the case when Q50 (curve 2), with due regard to the

medium elasticity for h(t);h(t, L/2). The boundary

conditions for (6) were similar to the previous case.

Curve 1 corresponds to d53. For curve 2 (rhombs), the

value of the field amplitude exceeded the threshold

Figure 2. Dependence of the azimuth angle in radian of the NLC director orientation on the dimensionless time t for the case of a
2D electric field lying in the plane (x, y). Curve 1: yx2yy50, d50.5; curve 2: yx2yy5p/2, d50.3; curve 3: yx2yy5p/2, d53; curve
4: (rhombs) yx2yy5p/2, d53, the solution for medium elasticity.
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value by 5.5 times. Curve 2 in figure 4 oscillates with the

same frequency and amplitude as curve 1, and on

average shows a stationary level dictated by the field

amplitude A, elastic constants and thickness of the

crystal L. Numerical analysis of equations (6) for the

case of the field rotating in plane (x, z) revealed the

impossibility of continuous rotation of the director,

even at an arbitrarily large excess of the field amplitude

value over the threshold value (it also follows from the

qualitative concept). Hence, figure 4 illustrates the case

Figure 3. Dependence of the NLC transmission function on the dimensionless time in the rotating field mode at yx2yy5p/2, d53
(for the solution shown by curve 3, figure 2).

Figure 4. Dependence of the polar angle in radian of the NLC director orientation on the dimensionless time for the case of a 2D
circular electric field (yx2yz5p/2, d53) lying in the plane (x, z): curve 1, elasticity ignored; curve 2 (rhombs), elasticity included.
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when the ignored spatial dependences may distort

qualitatively the pattern of the orientation dynamics.

A detailed study of NLC director reorientation, taking

account of spatial dependences and accuracy of the

approximations, accepted in the present paper, will be

reported in future papers.

4. NLC 3D orientational dynamics: numerical modelling

To solve the system of equations (12) in the general case,

we used numerical solution. The electric field values

were assigned as follows:

Ex~Exo sin 2pnxtzyxð Þ, Ey~Eyo sin 2pnytzyy

� �

Ez~
eEEzo sin 2pnztzyzð Þ{ea sin h cos h Ex cos QzEy sin Q

� �

e\zea cos2 h

ð21Þ

where Ex0, Ey0, Ez0 are the amplitudes of the electric

fields in vacuum. In the z-component of the electric

field, the anisotropic additive resulting from condition

(9) of the Maxwell equations was used; vi52pni. For

calculations, system (12) can be transformed to cyclic

frequency and re-written as:

dh

dt
~d nAð Þ mAð Þ, sin h

dQ

dt
~d nAð Þ pAð Þ,

h 0ð Þ~h0, Q 0ð Þ~Q0

ð22Þ

where h0 and Q0 are the initial conditions. As normal-

ization factors, the root-mean-square field amplitude

A~ E2
xozE2

yozE2
zo

� �1=2

and the mean frequency

n05(nx+ny+nz)/3 were used. Then

Ax~ax sin 2pNxtzyxð Þ, Ay~ay sin 2pNytzyy

� �
,

Az~
eEaz sin 2pNztzyzð Þ{ea sin h cos h Ax cos QzAy sin Q

� �

e\zea cos2 h

ð23Þ

where ax5Exo/A, ay5Eyo/A, az5Ezo/A; Nx5nx/n0,

Ny5ny/n0, Nz5nz/n0; and yx, yy, yz are the phase

additives. The dimensionless time is t5n0 t and d5eaA2/
(4pcn0).

The solutions to equation (22) behave rather differ-

ently. Depending on the parameter values, the following

regimes were observed: attainment of a stationary

solution (analogue of the non-threshold Fréedericksz

transition), periodic regime, quasi-periodic (multi-
modal) regime, and stochastic regimes of the strange-

attractor type. By way of illustration, we present here

several designs of dynamic orientation regime, which

clearly reflect the complexity of the predicted depen-

dences. Along with the functions h(t) and Q(t) found,

the behaviour of the solution with time can be

determined by considering the motion of the end of

the vector n on a unit sphere or the trajectory of this
motion on the plane (h, Q), which represents an

analogue of the phase space, the spectral characteristics

of the design solutions, and the spectrum of the

transmission function of the NLC sample. The latter

characteristic is important, since it is registered experi-

mentally in the simplest manner. The initial parameters,

for which the design has been carried out and curves

constructed, are listed in table 1.

The transmission function T is obtained from the

intensity of the light passing though the NLC. In

general, for the optical axis, which coincides with n,

arbitrarily directed in space, T appears as [15]:

T tð Þ~T h tð Þ, Q tð Þ½ �~cos2 x{sin 2Q sin 2 Q{xð Þsin2 D

2
:ð24Þ

The difference of phase incursion D, which ignores the

spatial dependences, is calculated from the formula

D~2p
L

l

n\njj

n2
\ cos2 hzn2

jj sin2 h
� �

1
2

{n\

2

4

3

5

where l is the wavelength of the normally incident

probe radiation, n||, n) are the major values of the

Table 1. Initial parameters for the numerical calculation.

Figure number

a N y

dax:ay:az Nx:Ny:Nz yx, yy, yz

5 1:1:0 1:1:1 0, p/2, 0 3
6 1:1:0 1:0.85:0 – 3
7, 9 1:1:1 1.25:1:1 0, p/2, 0 21.5
8, 12 1:1:1 1:1.1:1 0, 0, p/2 0.65
10, 11 1:1:1.5 1:1.1:1 p/2, 0, 0 30
13(a), 13(b) 1:1.1:1 1.25:1.1:1 0, p/2, 0 25
13(c), 13(d) 1:1:1.06 1.2:1:1 0, p/2, 0 22
13(e), 13(f) 1:1:1 1:1.1:1 p/2, 0, 0 21.45

(21)

(23)
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refractive indices for ordinary and extraordinary waves,

respectively, and x is the angle between the polarizer

and analyser For the case of x5p/4, h50, T(t) becomes

T tð Þ~T Q tð Þ½ �~ 1zsin 4Q tð Þ½ �=2: ð25Þ

The Fourier-transformation F[T(t)] is used to analyse

the spectral characteristics of T(t). The frequency

maxima that characterize the dynamics of orientation

n must be present in the spectrum T(t); it will change in

accordance with equation (24), (25). The director rota-

tion, time-linear part in the Q(t) dependence (16) or (19),

must contribute, in accordance with equation (25) to

the Fourier-spectrum F[T(t)] in the area where the

frequency is four times the rotation frequency n. The

oscillating additives in equation (16) or (19) can change

the spectral composition F[T(t)] as compared with the

Fourier-spectra F[Q(t)], F[h(t)], but the major part of

the oscillations must remain almost the same.

Figure 5 shows the designed absolute value |F[T(t)]|

of the transmission function spectrum dimensionless

frequency N5n/n0 at d53 for a single-frequency 2D

rotating field, figure 6 shows the same characteristic for

a two-component two-frequency field at the same d53.

In the first version, figure 5 (a), there is a pronounced

peak at the frequency N52, which correlates with the

director oscillations (16) and on the shifted N,1.97.

This shift results from the modulation of transmission

function by the director rotation. The frequency

component caused by the rotation of n is shown in

figure 5 (b) for 0(N(0.1, it is equal to the fourfold

director rotation frequency (figure 2, curve 3). In the

second version (figure 6), under the action of the two-

frequency field (Nx51, Ny50.85), we observe: the

maximum at the doubled differential frequency

2(Nx2Ny), the harmonics divisible to this frequency,

and the peaks on the doubled frequencies of the external

fields. All design graphs of the transmission function are

normalized to 1 at the maximum point. The maxima in

figures 5 and 6 correlates with zero frequency.

Figures 7–13 (see also table 1) show the solutions of

equation (22) for two types of NLC, which have ea of

different sign, which dictates the sign of the dimension-

less parameter d. As can be seen from the Figures, the

behaviour of the director orientation with time can

present complex quasi-periodic and stochastic trajec-

tories analogous to solutions of the strange-attractor

type [16]. Depending on initial parameters, the director

may have several limiting states (limiting cycles [16]),

around which it performs an oscillatory or rotational

motion, maving, periodically or quasi-periodically,

from one cycle to another (figure 7). In the given

example, the high frequency component, whose ampli-

tude considerably increases at the moment of transition

from one state to another, is implied in slow periodical

changes of the orientation angle state. The mean values

of neighbouring levels with respect to Q(t) differ from

each other by ¡p, the sign of the jump being random.

The maximum values of h(t), about p/2, are attained at

Figure 5. Designed module of the transmission function spectrum vs dimensionless frequency for a 2D field rotating in the plane
(x, y); yx2yy5p/2, d53. (a) frequency range 0(N(5; (b) 0(N(0.1, showing the peak responsible for the director rotation.
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the triangle vertices. Unlike the function Q(t), the high

frequency amplitude of h(t) is observed less clearly on

the background of the smoother variations.

In such regimes, the solutions of the equations

depend on initial conditions. By way of example,

figure 8 shows the curves Q(t) predicted for various

zero-time conditions h(0) and Q(0) (to improve the

clarity of the figure, the dependences h(t) are not

shown). The figure shows that at a moment close to

t50, the curves Q(t) behave similarly for various initial

Figure 6. Designed module of the transmission function spectrum vs dimensionless frequency for a 2D two-frequency field in the
plane (x, y); Nx51, Ny50.85, d53.

Figure 7. Dependence of the polar angle h (curve 1) and azimuthal angle Q (curve 2) in radian of the director orientation on
dimensionless time. Design parameters of the fields are listed in table 1.
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conditions; yet, at some time, the system seems to

‘recall’ its initial state and abruptly changes its

trajectory. The functions h(t) behave similarly.

The frequency spectrum (we have chosen the absolute

value of the Fourier-spectrum |F[Q(t)]|) of the solutions

close to stochastic ones, becomes broad-band, and an

example (Nx?Ny5Nz) is given in figure 9. It is seen

from this figure that in the range of the difference

(DN5Nx2Ny) and sum (Nx + Ny), distinct peaks in

the frequencies are observed, the amplitude of the

difference harmonics being 8 to 10 times greater than

the amplitude of the sum harmonics. At high values of d,

the time dependences h(t) and Q(t) become more

complicated, displaying a periodic behaviour (figure 10).

Figure 8. Dependence of the azimuth angle Q in radian on the dimensionless time t under different initial conditions: curve 1 – h0

5 0.001, Q0 5 0; curve 2 – h0 5 0.1, Q0 5 0; curve 3 – h0 5 0.1, Q0 5 0.1. Design parameters of the fields are listed in table 1.

Figure 9. Fourier-spectrum | F [Q] | dependence on dimensionless frequency for the solution shown in figure 7.
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The Fourier spectrum (see figure 11) becomes less

broken, with distinct equidistant harmonics, spaced

apart by 2DN, emerging in it. The transmission functions

T(t) of the sample in the stochastic regime calculated

from equation (24), are more chaotic in general appear-

ance (figure 12, the fragment of the transmission

function) than the initial solutions h(t) and Q(t). This is

caused by the extra non-linear dependences in the

transmission function itself (24).

The design trajectories of the motion in the plane in

the phase space, and Fourier spectra of the transmission

function corresponding to these trajectories, are shown

Figure 10. Dependence of the polar angle h in radian (curve 1) and azimuth angle Q (curve 2, dotted line) of the director
orientation on dimensionless time. Design parameters of the fields are listed in table 1.

Figure 11. Fourier-spectrum |F [Q]| versus dimensionless frequency for the solution shown in figure 10.
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in figure 13. Similarly to the solutions of h(t) and Q(t),

the phase trajectories present very complex shapes. The

spectral functions |F[T(t)]| have characteristic lines,

figures 13 (b, d). The appearance of stochastics is

indicated by the noise component as the frequences

approache zero, figures 13 (d, f), and in the summary

frequencies region. The volumetric reorientation,

Q(t) ? 0, h(t) ? 0, which appears under the action of a

three-component field on the NLC, complicates the

spectral characteristics of the transmission function

(24), in particular, low frequency lines appear.

Note that the solutions presented here by no means

exhaust all dynamic orientational behaviour that can be

derived from equation (22). It is impossible to give a

complete description of all regimes in one article,

because the initial parameters are too large in number

(in the case under consideration, with allowance for

normalization, a total of seven parameters is to be dealt

with).

A preliminary analysis showed that, above all, for

non-determinate solutions to be obtained, the bulk

deformation of NLC orientation or involvement of all

the three field components, Ex?0, Ey?0, and Ez?0, is

necessary. This conclusion also follows from the

mathematical statement that predicts no stochastic

solutions to exist for the systems governed by just one

first order ordinary differential equation [16]. With one

component being zero among the three field compo-

nents, in the steady state regime, system (12) reduces to

one equation for the deviation angle of the director that

lies in the variation plane of E. Moreover, it is necessary

that the electric fields contain components of at least

two different frequencies: vi?vj5vk, i, j, k5x, y, z,

i?j?k.

5. Description of the experiment

In the experiment we used as NLC a mixture of 5CB

and MBBA. The cell shown in figure 14 (a) contained

two parallel flat glass plates. The gap L between them

depended on calibrated insertions of teflon. The inner

surfaces of the plates were coated by the electrode

system, which is shown in figure 14 (b). The electrode

configuration consisted of two crossed electrode groups.

The first comprised three parallel stripes of width

D51 mm, with gaps between of d50.2 mm, set on one

plate (designated as 1, 2, 3 in the figure). Asimilar

grouping was set on the another plate (4, 5, 6). The

standard ITO mixture was used for the transparent

electrodes. We realized a simplified technological

version with so-called in-plane-switching (IPS) [17].

When assembling, the electrode stripes of the top and

bottom glasses were oriented perpendicularly. The

external variable voltages were supplied from genera-

tors to realize electric fields as follows: on electrodes 1

and 2, along the x-axis, on electrode 4 and 6, along they

y-axis, and on electrodes 2 and 5, along the z-axis. The

electric fields in the inter-electrode space are defined as

Ex,Ux/D, Ey,Uy/D, Ez,Ux/L. To obtain comparable

fields inside the sample, Ex, Ey,Ez at a given value of

D; a gap thickness L5150 mm proved to be optimum.

Experiments were also carried out with other values of

Figure 12. A fragment of the transmission function in relation to dimensionless time. Design parameters of the fields are listed in
table 1.
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Figure 13. (a, c, e) Trajectories of motion in the plane [h(t), Q(t)] in radian; (b, d, f ) corresponding spectral transmission functions.
Design parameters of the fields are listed in table 1.
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L in the range 10–150 mm. The experimental data given

below were obtained mainly on 150 mm samples. The

applied voltages did not exceed the mean-square values

for Ux, Uy,150 V and Uz,50 V. The frequency range

for the experiments was 10 Hz–5 MHz. The initial

orientation of the samples was homeotropical and

resulted from the chromalan processing on the glass

surface.

To diagnose the state of the NLC orientation (the

transmission function T vs time t), the sample was

illuminated by a focused beam (f530 cm) of a semi-

conductor low power laser (l50.647 mm, controlled

output 1–10 mW). An analyser and photodetector

(photomultiplier tube of photodiode) were set in the

path of the radiation. To visualize the slow changes of

the transmitted and dispersed light, the photodetector

was replaced with a dull screen. To obtain a conoscopic

pattern, the laser beam was previously extended by a

collimator, and then directed onto the NLC situated in

the convergent (divergent) part of the beam through a

short focus lens (f53 cm).

The data from the photodetector were received by a

digital oscillograph (BORDO-221, made as a computer

expansion card), combined with a spectrum analyser. In

the general case, the experiment involved three digital

generators (computer expansion box AGENT B-230),

These could operate either independently, when Ux0,

Uy0, Uz0; nx, ny, nz were assigned; or in a mode with two

or three similar frequencies with the given phase shift

yij5yi2yj (i, j5x, y, z; yx, yy, yz are the phases of the

corresponding signals in the range from 0 to ¡180u)
between the one-frequency voltages. To obtain a

increased voltages (up to 250 V) on the sample electro-

des, we used transformers of the corresponding

frequency range. In addition, we provided for constant

voltage supplies Vx0, Vy0, Vz0 on the electrodes. Each

master and diagnosing system was controlled from

one computer. In the general case, at the sinusoid

voltages on the generators, it was assigned:

Ux5Vx0+Ux0 sin (2pnxt+yx),

Uy5Vy0+Uy0 sin (2pnyt+yy), Uz5Vz0+Uz0 sin (2pnzt+yz).

6. Experimental results and discussion

The photomicrographs in figures 15 (a–c) show the

conoscopic patterns obtained in the experiment.

Figure 15 (a) shows the a typical image for an undis-

turbed homeotropically-oriented sample of the NLC.

Figure 15 (b) corresponds to a rotating 2D field,

Ux05Uy0598 V, Uz050 V; nx5ny53 kHz, yxy5yx2

yy590u. Figure 15 (c) corresponds to astationary sinu-

soidal electric field with parameters Ux05Uy0570 V,

Uz050; nx5ny53 kHz. In these cases, unless otherwise

specified, the fixed bias of the voltage is equal to zero

(Vi050). We obtained a large number of varying

conoscopic patterns, their appearance depending on

almost every parameter governing the electric fields in

the sample. These time-averaged images hardly give

quantitative information, and hence in this paper we

have restricted discussion to the two the most typical

patterns. In the case of Fréedericksz re-orientation from

the homeotropic state into the planar state, one

observes the smooth transition of the cruciform image

into a pattern consisting of hyperbolas [18]. The

complex structure of the produced images

(Figure 15 b, c) vindicates the spatial nonuniformity of

the director’s and electric field orientation in the region

of electrodes 2 and 5 crossing, see the NLC sample,

Figure 14 (b). The time of the conoscopic pattern onset

after the voltage initiation is about 0.5–5 s. Upon this,

Figure 14. (a) The appearance of the NLC sample used in the experiments. (b) Enlarged photograph of the electrode system:
numbers 1, 2, 3 denote electrode stripes on the bottom glass plate; 4, 5, 6 denote stripes on the top plate.
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the image remains invariable for an arbitrary long

period. Such an onset (though the patterns themselves

are different) is also observed at the low frequencies, up

to 10 Hz. At even lower frequencies, the patterns start to

oscillate visibly. At the low frequencies the electro-

hydrodynamics is more likely to effect the pattern (see

also table 2).

To measure the transmission function, the central

part of the NLC sample (crossing area of electrodes 2

and 5) was set in the focal waist of the probe radiation.

The width of the focal waist was d(0.1 mm, which is

one order less than the transverse inter-electrode space

D51 mm. The focusing used for observation allowed a

reduction in the effect of any non-uniformity appearing

crosswise in the NLC orientation. Nevertheless, the

transverse structure of the intensity of the light spot

passing through the disturbed NLC was retained, but

was more uniform than that obtained with a wide beam.

The study and of transverse non-uniformities appearing

in this experiment is beyond the scope of the present

paper, and calls for the individual consideration.

The major quantified experimental findings are the

spectral transmission functions F(n)5|F[T(t)]|, which

are defined as the absolute value of the Fourier-

transformation from T(t). This chosen characteristic is

preferred to the time functions, because of the broad

frequency band of the registered signals and due to the

highly differing frequencies present in the spectrum,

especially in the near-stochastic modes. As an example,

figure 16 shows an oscillogram of the transmission

function T(t) with no constant component. It is given

for 5CB under the influence of electric fields with

frequencies nx53 MHz, ny55 MHz, nz54 MHz, bias

voltages of Vx05Vy0530 V, Vz050 and peak voltages

of Ux05140 V, Uy05120 V, Uz0515 V.

The transmission spectra obtained in the experiments,

similar to the numerical modelling (see § 5), are very

varied. Only a small section of the frequency depen-

dences, the most interesting for us, is presented. In this

paper we make only brief comments; a more detailed

analysis of the interaction between the NLC and

variable electric fields calls for a more detailed

examination.

In the given experimental data, the signal-to-noise

ratio in the measurement system did not exceed ,5%.

The experimental parameters illustrated by the graphs,

are listed in table 2.

Figures 17 and 18 show the transmission spectra

obtained when the NLC 5CB sample is affected by

electric fields in the sonic range. The variations lie

approximately in one plane (x, y). The field parameters

were the following: in figure 17, Ux05Uy05150 V,

Uz050 V; nx5ny55 kHz, yx2yy50u which correlates

to a constant-direction field; in figure 18 (a, b)

Ux05Uy05210 V, Uz050 V; nx5ny55 kHz, yx2yy590u,
which correlates with the field rotating with frequency

5 kHz. The spectral function in figure 18 (a) clearly

shows a maximum at the doubled frequency of 10 kHz,

whereas in figure 17 it is absent. The frequency

component caused by the rotation of n, is shown in

figure 18 (b) in the region n(200 Hz. The calculated

rotation peak based on the solution of equations (22),

(23) gives a value of ,25 Hz, which agrees with the

experimental findings in the order of magnitude. The

imaged spectral functions confirm the conclusions of

Figure 15. Photomicrographs of the conoscopic patterns for
5CB. (a) The image of the undisturbed sample; (b) the sample
under the action of a 2D rotating field; (c) the electric field has
constant direction along the image diagonal. The onset
parameters of the fields are given in table 2.
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the analytical solutions of equations (16) and (18),

namely the presence of orientation oscillations in the

onset mode, when the NLC is affected by a circular

electric field (yx2yy590u), and correspondingly their

absence when the field direction is fixed (yx2yy50u).
The pronounced peak in the spectrum of figure 18 (a) at

5 kHz, and the splitting of the rotation peak, fig-

ure 18 (b), are not explained by the model of equa-

tions (13), (14) and (16), which consider the

reorientation in one plane (x, y) and vindicate the

presence of the 3D deformation, (Q(t, r)?0, h(t, r)?0),

caused by the non-uniformity of the fields appearing in

the NLC, or by the flexoelectric effect.

In figure 19 (a), for the MHz range of one-frequency

2D fields (n53.8 MHz, yx2yy590u), apart from the

peak at the doubled frequency of the fields

(n57.6 MHz), one can clearly see a wide maximum at

the peak of n,300 kHz. Such a peak is typical for the

MHz region, and further study is needed to interpret it.

The more detailed analysis must take account of the

temperature dependence of the coefficients involved in

the task, since NLC reorientation in the conditions

Table 2. Experimental parameters.

Figure number NLC type Vx0:Vy0:Vz0/V Ux0:Uy0:Uz0/V nx:ny:nz/kHz yx, yy, yz/degree

15(a) 5CB 0:0:0 0:0:0 — —
15(b) 5CB 0:0:0 98:98:0 3:3:0 0, 90, 0
15(c) 5CB 0:0:0 70:70:0 3:3:0 0, 0, 0
16 5CB 30:30:0 140:120:10 3000:4000:5000 —
17 5CB 0:0:0 150:150:0 5:5:0 0, 0, 0
18(a, b) 5CB 0:0:0 210:210:0 5:5:0 0, 90, 0
19(a) 5CB 20:20:0 160:160:0 3800:3800:0 0, 90, 0
19(b) 5CB 5:5:0 70:70:0 3.95:4.95:0 —
19(c) 5CB 0:0:10 140:180:0 2:1.7:0 —
19(d) 5CB 25:0:0 70:140:0 17:20:0 —
20(a) MBBA 0:0:0 70:70:7 2:1.7:1.7 —
20(b) MBBA 0:0:7 100:120:15 20:17:19 —
20(c) MBBA 0:0:6 70:80:15 3700:2600:2900 —
20(d) 5CB 25:25:0 150:150:5 1100:2200:3300 —

Figure 16. A portion of the experimental dependence of the transmission function (without constant component) on time, when
the sample is treated with 3D electric fields in the MHz range. The onset parameters of the fields are given in table 2.
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under consideration progressed with increased release of

heat. On observing the sample in a thermal imager,

especially in high frequency fields, a temperature rise of

10–20uC was recorded in the interaction zone. This

results in a change of viscous coefficients; and rotation

frequency, as follows from equation (19), is propor-

tional to the 1/c2.

Figure 19 (b–d) shows spectra of the transmission

functions obtained for different onset values of the 2D

fields and frequencies. It should be noted that in the

experiments with electric fields it is impossible to obtain

a field system without a z-component in the sample.

This follows from the Maxwell equation (9) for an

anisotropic medium, Ez,(ea/e))Et and spatial non-

uniformity of the electric fields formed in the NLC.

The spectral characteristics of the transmission function

are more complicated than in the previous one-

frequency version. A common property of the spectra

presented in figure 19 (b–d) is a high peak on the

differential (or double differential) frequency, which

exceeds the sum frequency peaks, and also the peaks at

the frequencies aliquot to the differential frequency.

This is in qualitative, and sometimes quantitative,

agreement with the results of numerical calculations

presented in figures 6, 11 and 13. It is still unclear under

what conditions the first maximum peak appears

(excluding the zero harmonics) at the frequency

Dn5|nx2ny|, figure 19 (c), or 2 Dn, figure 19 (b). As a

rule, the peak at the point Dn appears if the polarizer

and analyser are crossed at an angle x, see equation (24),

which is not aliquot to 45u. In the experiments, x590u;
this may be related to the dependence of the vector n

reorientation dynamics on its initial conditions n(t50)

(see figure 8).

The interaction between the NLC and three-compo-

nent and different-frequency 3D fields is more complex.

The interpretation of the experimental spectra calls for a

more detailed examination, especially in the MHz range

of frequencies. Figure 20 (a, b) shows the transmission

function spectrum for acoustic frequencies; the field

parameters and type of NLC used are listed in table 2.

Figure 20 (c, d) (parameters in table 2) presents the

transmission function spectra for electric fields in the

MHz range. We should note the wide noise component

in the graphs of figures 19 (a), 20 (c) and 20 (d) within

the frequency range 0–2 MHz. It causes transmission

function stochastization. In the numerical calculations,

a noise component of limited range also appears too, see

figures 13 (d, f ). The study of the experimental data for

the MHz range is also complicated by the need to take

account of the capacity characteristics of the electrode

system.

Figure 17. The spectrum of the transmission function of 5CB for a variable field in the sonic range (5 kHz) with constant
direction. The onset parameters of the fields are given in table 2.
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Figure 18. The spectrum of the transmission function of 5CB for a variable field in the sonic range (5 kHz) with 2D rotating
direction: (a) frequency range 0(n(20 kHz; (b) 0(n(100 Hz, the frequency region with the peaks responsible for the director
rotation. The onset parameters of the fields are given in table 2.
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Many of the spectra under consideration have a

common feature, namely the pronounced structure,

which consists of individual lines. This agrees well with

the calculation results, see figures 11 and 13 (b, d). The

presence of narrow low frequency peaks of n,Dn,

Figure 20 (b), depends on the discreteness of the NLC

Figure 19. Spectra of the transmission function of 5CB lying in 2D electric fields assigned in the plane (x, y): (a) one-frequency 2D
rotating field; (b, c, d) two-frequency fields with different directions. The onset parameters of the fields and NLC type are given in
table 2.
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Figure 20. The spectra of the transmission function of a NLC in a 3D different-frequency electric field: (a, b, c) MBBA; (d) 5CB.
The onset parameters of the fields and NLC type are given in table 2.
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director states and on the transitions between these

states, which were obtained in the numerical calcula-

tions, see figures 7 and 8.

7. Conclusion

The reported experiments with various interactions

between multi-component and multi-frequency electric

fields and a NLC have yielded qualitative agreement

between calculation and experimental findings. The

positions of maxima in the frequency characteristics of

the transmission functions for 2D geometry of the

electric fields are in good quantitative agreement with

the theoretically calculated frequency peaks.

Theoretically predicted stochastization of the NLC

director state has been confirmed experimentally.

Oscillation modes of the director orientation at MHz

frequencies have been realized.

We failed to obtain strict correspondence between

calculated and experimental findings for the approxi-

mated model under study. The main reasons for the

discrepancy are the neglected elastic forces, spatial

dependence of the electric fields, possible appearance of

hydrodynamic streams (due to the appearance of low

frequency components in the orientation dynamics) and

flexoelectric elements. The numerical integration of the

equation system in the partial derivatives (6), (9) gave

the basis for regard of the spatial dependence of the

orientation of n (at the first stage, only the effect of

elastic forces in the NLC was considered). This resulted

in even more complicated and multiple solutions.

Further theoretical research into the considered inter-

action, as well as experimental results will be published

later.

From the mathematical viewpoint, the equations

studied are the subject of non-linear dynamics theory

[16]. The discrete version of the special case of

equations (22), (23), after a change of the variables,

converts into the situation studied by Grebogy and co-

authors in [19]. The equations resulting from this

situation approximately describe a system of three

non-linear interrelated oscillators. Constructed

Poincare cross-sections present an abstract torus map

in 4D phase space (h, Q, h, Q) on the 2D plane. In [19]

the presence of solutions in the form of an irregular

attractor is proven on the ground of numerical

calculations, and the constructed motion trajectories

are similar in complex structure to the corresponding

cross-sections obtained in the present paper.

The special property of the attractor behaviour of the

solutions, and also the high sensitivity of the discrete

version of the equations to the initial conditions and

input parameters (for example, in [19] the amplitude

and phase additives to equation (23) were chosen

arbitrarily) did not allow us to perform an accurate

quantitative comparison of the results of [19] and

corresponding results of the present paper.

Finally it should be noted that the motive for this

fairly detailed study of the described model is the study

of the generation of optical harmonics, which appear

when polymer media interact with coherent radiation.

The attempt to describe numerically the non-linear

modes of radiation–NLC interaction has yielded an

unexpected result. When analysing the reasons for

numerical solution stochastization (stability and accu-

racy of the applied design models was checked in

advance), it was concluded that this effect results from

NLC–medium properties, and these properties are

described by the constructive equations. Hence, the

simplified mathematical model was chosen (Maxwell’s

equations have been rewritten in an electrostatic form),

and nevertheless this model is close to that where the

NLC interacts with electric fields up to the MHz range.

The performed numerical and experimental investiga-

tions have revealed a new physical subject of non-linear

dynamics. This involves a NLC lying in a multi-

component variable electric field, and can be described

by a dissipative system of ordinary differential equa-

tions. This system is one more example among known

determined equations, which cause irregular oscillations

[16]. The possibility of oscillating behaviour of the NLC

orientation with MHz frequencies has been proven. The

stochastization of the NLC orientation state must be

taken account of during the consideration of liquid

crystal–media interaction in the multi-component and

multi-frequency electric fields. Rapidly variable orienta-

tion states of a NLC are already a feature of liquid

crystal engineering [12].
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